Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.011
Filtrar
2.
J Med Imaging Radiat Oncol ; 68(3): 250-256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38563291

RESUMEN

INTRODUCTION: The purpose of the study was to determine the usefulness of Ga-68 DOTATATE PET/MR in the identification of tumours in individuals with multiple endocrine neoplasia type 1 (MEN1). METHODS: In this retrospective investigation, five individuals who had tested positive for a hereditary MEN1 variant underwent Ga-68 DOTATATE PET/MR between May 2020 and January 2023. Several types of tumours associated with MEN1 were studied. MEN1-related tumours included pituitary, parathyroid, gastroenteropancreatic, and adrenal. The rates of lesion identification between MRI, Ga-68 DOTATATE PET, and Ga-68 DOTATATE PET/MRI were examined. The maximum and mean standard uptake values (SUVmax and SUVmean) were evaluated in carefully delineated volumes of interest (VOI) for the relevant tumours. RESULTS: Of the 24 primary lesions, 14 were identified by Ga-68 DOTATATE PET, 18 by MRI, and 20 by Ga-68 DOTATATE PET/MRI. Two pituitary tumours were detected by all three techniques. All parathyroid tumours that were not detected by Ga-68 DOTATATE PET and MRI were found by Tc-99m MIBI SPECT/CT or/and EUS. Ga-68 DOTATATE PET/MR detected more gastroenteropancreatic lesions. All adrenal tumours not identified by Ga-68 DOTATATE PET were found by MRI or CT. The median SUVmax for lesions identified on Ga-68 DOTATATE PET/MRI was 18.4 (range, 3.8-85.2), and the median SUVmean was 12.0 (range, 2.3-49.8). CONCLUSION: The combination of Ga-68 DOTATATE PET and MRI demonstrated a higher detection rate and may be more useful in the work-up of MEN1 providing a panoramic view of MEN1-related lesions. To increase the identification of MEN1-associated neuroendocrine lesions in the parathyroid gland, approaches other than Ga-68 DOTATATE PET/MRI should be used.


Asunto(s)
Imagen por Resonancia Magnética , Neoplasia Endocrina Múltiple Tipo 1 , Compuestos Organometálicos , Tomografía de Emisión de Positrones , Humanos , Neoplasia Endocrina Múltiple Tipo 1/diagnóstico por imagen , Masculino , Femenino , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Adulto , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Imagen Multimodal/métodos , Anciano , Neoplasias de las Paratiroides/diagnóstico por imagen , Adulto Joven
3.
Phys Med Biol ; 69(8)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38457838

RESUMEN

Objective. Manual analysis of individual cancer lesions to assess disease response is clinically impractical and requires automated lesion tracking methodologies. However, no methodology has been developed for whole-body individual lesion tracking, across an arbitrary number of scans, and acquired with various imaging modalities.Approach. This study introduces a lesion tracking methodology and benchmarked it using 2368Ga-DOTATATE PET/CT and PET/MR images of eight neuroendocrine tumor patients. The methodology consists of six steps: (1) alignment of multiple scans via image registration, (2) body-part labeling, (3) automatic lesion-wise dilation, (4) clustering of lesions based on local lesion shape metrics, (5) assignment of lesion tracks, and (6) output of a lesion graph. Registration performance was evaluated via landmark distance, lesion matching accuracy was evaluated between each image pair, and lesion tracking accuracy was evaluated via identical track ratio. Sensitivity studies were performed to evaluate the impact of lesion dilation (fixed versus automatic dilation), anatomic location, image modalities (inter- versus intra-modality), registration mode (direct versus indirect registration), and track size (number of time-points and lesions) on lesion matching and tracking performance.Main results. Manual contouring yielded 956 lesions, 1570 lesion-matching decisions, and 493 lesion tracks. The median residual registration error was 2.5 mm. The automatic lesion dilation led to 0.90 overall lesion matching accuracy, and an 88% identical track ratio. The methodology is robust regarding anatomic locations, image modalities, and registration modes. The number of scans had a moderate negative impact on the identical track ratio (94% for 2 scans, 91% for 3 scans, and 81% for 4 scans). The number of lesions substantially impacted the identical track ratio (93% for 2 nodes versus 54% for ≥5 nodes).Significance. The developed methodology resulted in high lesion-matching accuracy and enables automated lesion tracking in PET/CT and PET/MR.


Asunto(s)
Tumores Neuroendocrinos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagen Multimodal/métodos , Tomografía de Emisión de Positrones/métodos , Tumores Neuroendocrinos/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos
4.
Nanoscale ; 16(12): 6095-6108, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38444228

RESUMEN

In photothermal therapy (PTT), the photothermal conversion of the second near-infrared (NIR-II) window allows deeper penetration and higher laser irradiance and is considered a promising therapeutic strategy for deep tissues. Since cancer remains a leading cause of deaths worldwide, despite the numerous treatment options, we aimed to develop an improved bionic nanotheranostic for combined imaging and photothermal cancer therapy. We combined a gold nanobipyramid (Au NBP) as a photothermal agent and MnO2 as a magnetic resonance enhancer to produce core/shell structures (Au@MnO2; AM) and modified their surfaces with homologous cancer cell plasma membranes (PM) to enable tumour targeting. The performance of the resulting Au@MnO2@PM (AMP) nanotheranostic was evaluated in vitro and in vivo. AMP exhibits photothermal properties under NIR-II laser irradiation and has multimodal in vitro imaging functions. AMP enables the computed tomography (CT), photothermal imaging (PTI), and magnetic resonance imaging (MRI) of tumours. In particular, AMP exhibited a remarkable PTT effect on cancer cells in vitro and inhibited tumour cell growth under 1064 nm laser irradiation in vivo, with no significant systemic toxicity. This study achieved tumour therapy guided by multimodal imaging, thereby demonstrating a novel strategy for the use of bionic gold nanoparticles for tumour PTT under NIR-II laser irradiation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Oro/farmacología , Compuestos de Manganeso/farmacología , Compuestos de Manganeso/química , Biónica , Nanopartículas del Metal/uso terapéutico , Óxidos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Multimodal/métodos , Línea Celular Tumoral
6.
Curr Probl Diagn Radiol ; 53(2): 289-296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38307731

RESUMEN

Melanoma is among the most commonly reported non-mammary primary tumors to metastasize to the breast. Unfortunately, evidence of melanoma metastasis to any site portends a poor prognosis. Imaging studies can be useful in the early detection of metastatic melanoma which is essential for appropriate management of this disease. There have been very few previous studies on the imaging findings of metastatic melanoma especially across multiple imaging modalities. This review aims to describe these imaging features seen on mammography, ultrasound, magnetic resonance imaging (MRI) and fluorodeoxyglucose-positron emission tomography computed tomography (FDG PET/CT) using three case examples. Our findings, consistent with previous studies, describe melanoma metastases to the breast as largely non-specific, round or oval masses with circumscribed margins and homogeneous internal enhancement.


Asunto(s)
Neoplasias de la Mama , Melanoma , Humanos , Femenino , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Melanoma/diagnóstico por imagen , Mama , Imagen Multimodal/métodos , Fluorodesoxiglucosa F18 , Imagen por Resonancia Magnética , Radiofármacos , Tomografía de Emisión de Positrones , Neoplasias de la Mama/diagnóstico por imagen
7.
Echocardiography ; 41(2): e15787, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38400623

RESUMEN

A rare case of pulmonary artery fibroelastoma that demonstrates the importance of multimodality imaging and serial scans in reducing diagnostic uncertainty.


Asunto(s)
Fibroma , Neoplasias Cardíacas , Humanos , Neoplasias Cardíacas/diagnóstico , Arteria Pulmonar/diagnóstico por imagen , Imagen Multimodal/métodos , Fibroma/diagnóstico
9.
ACS Nano ; 18(6): 4886-4902, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295159

RESUMEN

Currently, inadequate early diagnostic methods hinder the prompt treatment of patients with heart failure and myocardial fibrosis. Magnetic resonance imaging is the gold standard noninvasive diagnostic method; however, its effectiveness is constrained by low resolution and challenges posed by certain patients who cannot undergo the procedure. Although enhanced computed tomography (CT) offers high resolution, challenges arise owing to the unclear differentiation between fibrotic and normal myocardial tissue. Furthermore, although echocardiography is real-time and convenient, it lacks the necessary resolution for detecting fibrotic myocardium, thus limiting its value in fibrosis detection. Inspired by the postinfarction accumulation of collagen types I and III, we developed a collagen-targeted multimodal imaging nanoplatform, CNA35-GP@NPs, comprising lipid nanoparticles (NPs), encapsulating gold nanorods (GNRs) and perfluoropentane (PFP). This platform facilitated ultrasound/photoacoustic/CT imaging of postinfarction cardiac fibrosis in a rat model of myocardial infarction (MI). The surface-modified peptide CNA35 exhibited excellent collagen fiber targeting. The strong near-infrared light absorption and substantial X-ray attenuation of the nanoplatform rendered it suitable for photoacoustic and CT imaging. In the rat model of MI, our study demonstrated that CNA35-GNR/PFP@NPs (CNA35-GP@NPs) achieved photoacoustic, ultrasound, and enhanced CT imaging of the fibrotic myocardium. Notably, the photoacoustic signal intensity positively correlated with the severity of myocardial fibrosis. Thus, this study presents a promising approach for accurately detecting and treating the fibrotic myocardium.


Asunto(s)
Infarto del Miocardio , Ratas , Humanos , Animales , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Miocardio/patología , Fibrosis , Colágeno , Imagen Multimodal/métodos , Imagen Molecular
10.
Eur J Nucl Med Mol Imaging ; 51(6): 1773-1785, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38197954

RESUMEN

PURPOSE: Imaging assessment of abdominopelvic tumor burden is crucial for debulking surgery decision in ovarian cancer patients. This study aims to compare the efficiency of [68Ga]Ga-FAPI-04 FAPI PET and MRI-DWI in the preoperative evaluation and its potential impact to debulking surgery decision. METHODS: Thirty-six patients with suspected/confirmed ovarian cancer were enrolled and underwent integrated [68Ga]Ga-FAPI-04 PET/MRI. Nineteen patients (15 stage III-IV and 4 I-II stage) who underwent debulking surgery were involved in the diagnostic efficiency analysis. The images of [68Ga]Ga-FAPI-04 PET and MRI-DWI were visually analyzed respectively. Immunohistochemistry on FAP was performed in metastatic lesions to investigate the radiological missing of [68Ga]Ga-FAPI-04 PET as well as its different performance in primary debulking surgery (PDS) and interval debulking surgery (IDS) patients. Potential imaging impact on management was also studied in 35 confirmed ovarian cancer patients. RESULTS: [68Ga]Ga-FAPI-04 PET displayed higher sensitivity (76.8% vs.59.9%), higher accuracy (84.9% vs. 80.7%), and lower missing rate (23.2% vs. 40.1%) than MRI-DWI in detecting abdominopelvic metastasis. The diagnostic superiority of [68Ga]Ga-FAPI-04 PET is more obvious in PDS patients but diminished in IDS patients. [68Ga]Ga-FAPI-04 PET outperformed MRI-DWI in 70.8% abdominopelvic regions (17/24), which contained seven key regions that impact the resectability and surgical complexity. MRI-DWI hold advantage in the peritoneal surface of the bladder and the central tendon of the diaphragm. Of the contradictory judgments between the two modalities (14.9%), [68Ga]Ga-FAPI-04 PET correctly identified more lesions, particularly in PDS patients (73.8%). In addition, FAP expression was independent of lesion size and decreased in IDS patients. [68Ga]Ga-FAPI-04 PET changed 42% of surgical planning that was previously based on MRI-DWI. CONCLUSION: [68Ga]Ga-FAPI-04 PET is more efficient in assisting debulking surgery in ovarian cancer patients than MRI-DWI. Integrated [68Ga]Ga-FAPI-04 PET/MR imaging is a potential method for planning debulking surgery in ovarian cancer patients.


Asunto(s)
Procedimientos Quirúrgicos de Citorreducción , Neoplasias Ováricas , Tomografía de Emisión de Positrones , Quinolinas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/cirugía , Neoplasias Ováricas/patología , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Anciano , Procedimientos Quirúrgicos de Citorreducción/métodos , Adulto , Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Imagen Multimodal/métodos , Cirugía Asistida por Computador/métodos , Radioisótopos de Galio
11.
BMC Ophthalmol ; 24(1): 3, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166867

RESUMEN

BACKGROUND: Multiple evanescent white dot syndrome (MEWDS)-like features is a rare condition triggered by a macular disease or iatrogenic injury, exhibiting MEWDS changes in the fundus. This study aims to describe the multimodal imaging features and outcomes of multifocal choroiditis/punctate inner choroidopathy (MFC/PIC) lesions with MEWDS-like features. METHODS: Six cases were studied retrospectively. All cases were given regional and oral corticosteroids. RESULTS: All cases showed an isolated juxtafoveal yellowish-white MFC/PIC lesion with disruption of RPE-Bruch's membrane-choriocapillaris complex (RPE-BM-CC), subretinal hyperreflective materials and choroidal thickening on optical coherence tomography. Two weeks after presentation, the grayish-white dots disappeared spontaneously and the corticosteroids were given. After four weeks, the ellipsoid zone (EZ) around the lesion and hyper-autofluorescence resolved. After 13 weeks, five cases showed shrinkage of the juxtafoveal lesion and restoration of foveal EZ. After six months, the juxtafoveal lesion became pigmented. Only one case developed type 2 choroidal neovascularization. CONCLUSIONS: The clinical course of MEWDS-like manifestations is still evanescent in our cases. The yellowish-white juxtafoveal MFC/PIC lesions with disruption of RPE-BM-CC and choroidal thickening showed a well-controlled prognosis after corticosteroid treatment.


Asunto(s)
Coroiditis , Síndromes de Puntos Blancos , Humanos , Coroiditis Multifocal , Estudios Retrospectivos , Coroiditis/diagnóstico , Coroiditis/tratamiento farmacológico , Síndromes de Puntos Blancos/diagnóstico , Corticoesteroides/uso terapéutico , Imagen Multimodal/métodos , Angiografía con Fluoresceína/métodos , Tomografía de Coherencia Óptica/métodos
13.
Med Phys ; 51(1): 192-208, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38060671

RESUMEN

BACKGROUND: Attenuation correction (AC) is an important methodical step in positron emission tomography/magnetic resonance imaging (PET/MRI) to correct for attenuated and scattered PET photons. PURPOSE: The overall quality of magnetic resonance (MR)-based AC in whole-body PET/MRI was evaluated in direct comparison to computed tomography (CT)-based AC serving as reference. The quantitative impact of isolated tissue classes in the MR-AC was systematically investigated to identify potential optimization needs and strategies. METHODS: Data of n = 60 whole-body PET/CT patients with normal lung tissue and without metal implants/prostheses were used to generate six different AC-models based on the CT data for each patient, simulating variations of MR-AC. The original continuous CT-AC (CT-org) is referred to as reference. A pseudo MR-AC (CT-mrac), generated from CT data, with four tissue classes and a bone atlas represents the MR-AC. Relative difference in linear attenuation coefficients (LAC) and standardized uptake values were calculated. From the results two improvements regarding soft tissue AC and lung AC were proposed and evaluated. RESULTS: The overall performance of MR-AC is in good agreement compared to CT-AC. Lungs, heart, and bone tissue were identified as the regions with most deviation to the CT-AC (myocardium -15%, bone tissue -14%, and lungs ±20%). Using single-valued LACs for AC in the lung only provides limited accuracy. For improved soft tissue AC, splitting the combined soft tissue class into muscles and organs each with adapted LAC could reduce the deviations to the CT-AC to < ±1%. For improved lung AC, applying a gradient LAC in the lungs could remarkably reduce over- or undercorrections in PET signal compared to CT-AC (±5%). CONCLUSIONS: The AC is important to ensure best PET image quality and accurate PET quantification for diagnostics and radiotherapy planning. The optimized segment-based AC proposed in this study, which was evaluated on PET/CT data, inherently reduces quantification bias in normal lung tissue and soft tissue compared to the CT-AC reference.


Asunto(s)
Imagen Multimodal , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Imagen Multimodal/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Tomografía Computarizada por Rayos X/métodos , Tomografía de Emisión de Positrones/métodos , Pulmón/diagnóstico por imagen
14.
IEEE Trans Med Imaging ; 43(3): 1125-1137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37948143

RESUMEN

Quantitative PET attenuation correction (AC) for cardiac PET/CT and PET/MR is a challenging problem. We propose and evaluate an AC approach that uses coincidences from a relatively weak and physically fixed sparse external source, in combination with that from the patient, to reconstruct µ -maps based on physics principles alone. The low 30 cm3 volume of the source makes it easy to fill and place, and the method does not use prior image data or attenuation map assumptions. Our supplemental transmission aided maximum likelihood reconstruction of attenuation and activity (sTX-MLAA) algorithm contains an attenuation map update that maximizes the likelihood of terms representing coincidences originating from tracer in the patient and a weighted expression of counts segmented from the external source alone. Both external source and patient scatter and randoms are fully corrected. We evaluated performance of sTX-MLAA compared to reference standard CT-based AC with FDG PET/CT phantom studies; including modeling a patient with myocardial inflammation. Through an ROI analysis we measured ≤ 5 % bias in activity concentrations for PET images generated with sTX-MLAA and a TX source strength ≥ 12.7 MBq, relative to CT-AC. PET background variability (from noise and sparse sampling) was substantially reduced with sTX-MLAA compared to using counts segmented from the transmission source alone for AC. Results suggest that sTX-MLAA will enable quantitative PET during cardiac PET/CT and PET/MR of human patients.


Asunto(s)
Imagen Multimodal , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Imagen Multimodal/métodos , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
15.
J Xray Sci Technol ; 32(1): 123-139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37458060

RESUMEN

BACKGROUND: By providing both functional and anatomical information from a single scan, digital imaging technologies like PET/CT and PET/MRI hybrids are gaining popularity in medical imaging industry. In clinical practice, the median value (SUVmed) receives less attention owing to disagreements surrounding what defines a lesion, but the SUVmax value, which is a semi-quantitative statistic used to analyse PET and PET/CT images, is commonly used to evaluate lesions. OBJECTIVE: This study aims to build an image processing technique with the purpose of automatically detecting and isolating lesions in PET/CT images, as well as measuring and assessing the SUVmed. METHODS: The pictures are separated into their respective lesions using mathematical morphology and the crescent region, which are both part of the image processing method. In this research, a total of 18 different pictures of lesions were evaluated. RESULTS: The findings of the study reveal that the threshold is satisfied by both the SUVmax and the SUVmed for most of the lesion types. However, in six instances, the SUVmax and SUVmed values are found to be in different courts. CONCLUSION: The new information revealed by this study needs to be further investigated to determine if it has any practical value in diagnosing and monitoring lesions. However, results of this study suggest that SUVmed should receive more attention in the evaluation of lesions in PET and CT images.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Tomografía de Emisión de Positrones/métodos , Imagen Multimodal/métodos , Procesamiento de Imagen Asistido por Computador , Fluorodesoxiglucosa F18
16.
Eur Radiol ; 34(1): 673-685, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37535156

RESUMEN

OBJECTIVES: To calculate the pooled diagnostic performances of whole-body [18F]FDG PET/MR in M staging of [18F]FDG-avid cancer entities. METHODS: A diagnostic meta-analysis was conducted on the [18F]FDG PET/MR in M staging, including studies: (1) evaluated [18F]FDG PET/MR in detecting distant metastasis; (2) compared[ 18F]FDG PET/MR with histopathology, follow-up, or asynchronous multimodality imaging as the reference standard; (3) provided data for the whole-body evaluation; (4) provided adequate data to calculate the meta-analytic performances. Pooled performances were calculated with their confidence interval. In addition, forest plots, SROC curves, and likelihood ratio scatterplots were drawn. All analyses were performed using STATA 16. RESULTS: From 52 eligible studies, 2289 patients and 2072 metastases were entered in the meta-analysis. The whole-body pooled sensitivities were 0.95 (95%CI: 0.91-0.97) and 0.97 (95%CI: 0.91-0.99) at the patient and lesion levels, respectively. The pooled specificities were 0.99 (95%CI: 0.97-1.00) and 0.97 (95%CI: 0.90-0.99), respectively. Additionally, subgroup analyses were performed. The calculated pooled sensitivities for lung, gastrointestinal, breast, and gynecological cancers were 0.90, 0.93, 1.00, and 0.97, respectively. The pooled specificities were 1.00, 0.98, 0.97, and 1.00, respectively. Furthermore, the pooled sensitivities for non-small cell lung, colorectal, and cervical cancers were 0.92, 0.96, and 0.86, respectively. The pooled specificities were 1.00, 0.95, and 1.00, respectively. CONCLUSION: [18F]FDG PET/MR was a highly accurate modality in M staging in the reported [18F]FDG-avid malignancies. The results showed high sensitivity and specificity in each reviewed malignancy type. Thus, our findings may help clinicians and patients to be confident about the performance of [18F]FDG PET/MR in the clinic. CLINICAL RELEVANCE STATEMENT: Although [18F]FDG PET/MR is not a routine imaging technique in current guidelines, mostly due to its availability and logistic issues, our findings might add to the limited evidence regarding its performance, showing a sensitivity of 0.95 and specificity of 0.97. KEY POINTS: • The whole-body [18F]FDG PET/MR showed high accuracy in detecting distant metastases at both patient and lesion levels. • The pooled sensitivities were 95% and 97% and pooled specificities were 99% and 97% at patient and lesion levels, respectively. • The results suggested that 18F-FDG PET/MR was a strong modality in the exclusion and confirmation of distant metastases.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Humanos , Radiofármacos , Sensibilidad y Especificidad , Imagen Multimodal/métodos , Estadificación de Neoplasias , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos
17.
Adv Sci (Weinh) ; 11(7): e2306494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38083977

RESUMEN

Manganese phosphosulphide (MnPS3 ), a newly emerged and promising member of the 2D metal phosphorus trichalcogenides (MPX3 ) family, has aroused abundant interest due to its unique physicochemical properties and applications in energy storage and conversion. However, its potential in the field of biomedicine, particularly as a nanotherapeutic platform for cancer therapy, has remained largely unexplored. Herein, a 2D "all-in-one" theranostic nanoplatform based on MnPS3 is designed and applied for imaging-guided synergistic photothermal-chemodynamic therapy. (Iron) Fe (II) ions are immobilized on the surface of MnPS3 nanosheets to facilitate effective chemodynamic therapy (CDT). Upon surface modification with polydopamine (PDA) and polyethylene glycol (PEG), the obtained Fe-MnPS3 /PDA-PEG nanosheets exhibit exceptional photothermal conversion efficiency (η = 40.7%) and proficient pH/NIR-responsive Fenton catalytic activity, enabling efficient photothermal therapy (PTT) and CDT. Importantly, such nanoplatform can also serve as an efficient theranostic agent for multimodal imaging, facilitating real-time monitoring and guidance of the therapeutic process. After fulfilling the therapeutic functions, the Fe-MnPS3 /PDA-PEG nanosheets can be efficiently excreted from the body, alleviating the concerns of long-term retention and potential toxicity. This work presents an effective, precise, and safe 2D "all-in-one" theranostic nanoplatform based on MnPS3 for high-efficiency tumor-specific theranostics.


Asunto(s)
Indoles , Neoplasias , Fototerapia , Polímeros , Hierro , Terapia Fototérmica , Línea Celular Tumoral , Polietilenglicoles/química , Imagen Multimodal/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia
18.
Mol Pharm ; 21(1): 245-254, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38096423

RESUMEN

Assessing CD38 expression in vivo has become a significant element in multiple myeloma (MM) therapy, as it can be used to detect lesions and forecast the effectiveness of treatment. Accurate diagnosis requires a multifunctional, high-throughput probe screening platform to develop molecular probes for tumor-targeted multimodal imaging and treatment. Here, we investigated a microarray chip-based strategy for high-throughput screening of peptide probes for CD38. We obtained two new target peptides, CA-1 and CA-2, from a 105 peptide library with a dissociation constant (KD) of 10-7 M. The specificity and affinity of the target peptides were confirmed at the molecular and cellular levels. Peptide probes were labeled with indocyanine green (ICG) dye and 68Ga-DOTA, which were injected into a CD38-positive Ramos tumor-bearing mouse via its tail vein, and small animal fluorescence and positron emission tomography (PET) imaging showed that the peptide probes could show specific enrichment in the tumor tissue. Our study shows that a microchip-based screening of peptide probes can be used as a promising imaging tool for MM diagnosis.


Asunto(s)
Mieloma Múltiple , Ratones , Animales , Mieloma Múltiple/diagnóstico por imagen , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Péptidos/química , Imagen Multimodal/métodos , Radioisótopos de Galio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...